ؤ وإذا بُرِّد لدرجتين أيضًا، يصبح مائعًا فائقًا، يتدفق دون مقاومة من حاويته، كما تتدفق الإلكترونات دون مقاومة في الموصل الفائق.

الآن اضغط الهيليوم إلى 50 أتموسفير (وحدة قياس الضغط الجوي) حتى يتصلب، ثم برده أكثر إلى اثنين من أعشار الدرجة تقريبًا فوق الصفر المطلق، سيصبح هناك الكثير من الجدل حول ماهية ما سيصبحه، فربما يصبح صلبًا فائقًا أو في حالة صلبة أو في حالة صلبة به بعض الصلب الفائق في أنحائه.

في الواقع، قد يكون زجاجًا فائقًا، وفق تقرير جي سي سياموس ديفيس، بروفيسور العلوم الفيزيائية في جامعة كورنيل وزملائه الذين نشروا في العدد الأول لشهر مايو في مجلة Science.

حذّر الباحثون في استنتاجاتهم، ليس من أن المادة زجاج بل فيما يخص تقديم أدلة لدعم تلك الفكرة، التي طرحها واضعو النظريات منذ عامين تقريبًا.

يشير كل ذلك إلى الهيليوم-4، النوع الشائع من الهيليوم المستخدم في البالونات، أما الهيليوم-3، عبارة عن نظير يحتوي داخل نواته على بروتونين ونيوترون واحد، له نظير لكن بخصائص مختلفة.

حصل باحثو جامعة كورنيل روبرت ريتشاردسون وديفيد لي ودوجلاس أوشيروف على جائزة نوبل لاكتشافهم حالة السائل الفائق للهيليوم-3.

في الصلب، ترتبط الذرات ببعضها في بنية بلورية منتظمة كما يعرفها العلماء، وفي المائع، تتحرك الذرات بِحُرية، الزجاج هو مائع يتدفق ببطء شديد ما يجعله يبدو صلبًا. راقب نافذتك لبضع مئات الأعوام، ستلاحظ أنها بدأت في الارتخاء.

على الرغم من النظرية القائلة بأن الهيليوم قد يكون صلبًا فائقًا كان موجودًا لسنوات، قُدِّم أول دليل عظيم يُعتَد به في تجربة عام 2004 التي أجراها موسى تشان في جامعة ولاية بنسلفانيا. هناك وضع الباحثون اسطوانة صغيرة من الهيليوم المجمَّد في مُذبذب فتل، الذي يدور بسرعة إلى الأمام والخلف، مثل محرك الغسالة، يعتمد التردد الرنان للمذبذب على الكتلة التي يحاول تحريكها إلى الأمام والخلف، وتوصّل الباحثون إلى أنه تحت درجة حرارة حرجة، تختفي بعض كتلة الهيليوم.

تخيل إمساك بيضة عموديًا في يدك وثني معصمك ذهابًا وإيابًا. لا توجد مقاومة كبيرة لأن الداخل مائع (سائل) وينزلق في الأنحاء، اسلق البيضة وستشعر أن كل كتلتها تقاوم، الآن افترض أن البيضة المسلوقة قررت ألّا تقاوم: إنه أمر شاذ، لن يحدث ذلك مع البيض، لكنه يحدث مع الهيليوم الصلب قرب الصفر المطلق.

هناك طريقة واحدة لشرح ذلك من زاوية مبدأ عدم اليقين لهايزنبرج: لا يمكننا معرفة موقع جسيم وسرعته بدقة كبيرة؛ فإذا ما أحطنا بأحدهما، يقل علمنا بالآخر، ولا تتحرك الذرات قرب الصفر المطلق بسرعة كبيرة، ثم يصبح موقعها فضفاضًا للغاية، تتراكب العديد من ذرات الهيليوم بشكل كبير لأنها تسلك سلوك ذرة مفردة وهي حالة من المادة تعرف باسم تكاثف بوز-أينشتاين، التي تكون غير متأثرة بأي شيء حولها وعديمة الاحتكاك بشكل أساسي.

استخدم فريق ديفيس أدواتٍ تشبه تلك التي استخدمها تشان، لكنهم سخّنوا العينة لنطاق من درجات الحرارة قرب الصفر المطلق حتى 300 ميللي كلفن (جزء من الألف من درجة الحرارة فوق الصفر المطلق).

بعد كل عملية تسخين يراقبون مدى تغيّر التردد الرنان للمذبذب على مدار عدة ساعات، وبشكل أساسي قياس المدى الذي استغرقته المادة لإعادة التجمد، وإنّ ما توصلوا إليه كان مُتّسقًا مع المادة التي أصبحت أكثر فأكثر شبيهة بالزجاج كلما رُفِعت درجة الحرارة، أكثر من شيء يستجيب مثل مادة صلبة بلورية.

يشبّه ديفيس التأثير ببرهنة نفخ الزجاج، يبدو الزجاج في درجة حرارة الغرفة صلبًا للغاية، يبدأ عند 1500 درجة مئوية في الذوبان والتدفق على سرعات مرئية للبشر، وكلما ارتفعت درجة الحرارة يتدفق بحرية أكبر، واعتماد خصائص التدفق الفائق هذه على درجة الحرارة يمكن استخدامه لتمييز الزجاج من البِلّور، وفق ما شرحه ديفيس.

يقارن ديفيس تسخين الزجاج بتسخين الألماس، الذي يظل بلورًا منتظمًا مهما بلغت سخونته، حتى يصل إلى درجة الذوبان (3550 درجة مئوية)، فتحت درجة الذوبان لن تشاهد أي تغيرات بطيئة على مر الوقت بعد التسخين.

كانت المفاجئة الثانية أنه فقط عندما تجمد خصائص شبيه الزجاج تظهر إشارة التدفق الفائق عديم الاحتكاك المكتشفة من قبل تشان، قال ديفيس: «إنه مثير للاهتمام لا لأنه يبدو شبيهًا بالزجاج فقط ولا لأنه يوضح إشارة تشان لكن لأنه يوضح العلاقة بين الاثنين، إننا نقول: أنه عند تجميد هذا الزجاج، يبدأ المائع الفائق في الحركة، ويمكن تسمية مثل هذه الحالة بالزجاج فائق».


  • ترجمة: نهى سليمان
  • تدقيق: سلام طالب
  • تحرير: كارينا معوض
  • المصدر