لدينا مثلث قائم الزاوية نعلم طول ضلعيه القائمين، فكيف نحسب طول الضلع الثالث؟ الجواب سهل، فقد درستم مقرر الهندسة في المدرسة وتعلمتم نظرية فيثاغورس، العلاقة الرياضية التي يبلغ عمرها آلاف الأعوام.
تنص نظرية فيثاغورس على أنه في المثلث القائم، مجموع مربعي طولي الضلعين القائمين يساوي مربع طول الضلع الثالث الذي يسمى بالوتر. وعليه، يمكن حساب طول الوتر عبر المعادلة a^2+b^2=c^2 التي يمثلان فيها a وb الضلعين القائمين ويمثل c الوتر.
من هو فيثاغورس؟
فيثاغورس هو مفكر إغريقي وُلد في جزيرة ساموس وعاش في الفترة بين 570 إلى 490 قبل الميلاد، وكان شخصية غريبة ومثيرة للاهتمام فقد كان فيلسوفًا وعالم رياضيات وقائد طائفة سرية في الوقت نفسه.
اشتهر فيثاغورس في زمانه بإيمانه بالتقمص والتزامه بنمط حياة الزهد واتباع حمية نباتية صارمة، وتقيده بالطقوس الدينية والكثير من ضبط النفس الذي علمه لأتباعه، أكثر من شهرته بحساب طول وتر المثلث.
يصف كريستوف ريدفيغ كاتب سيرة فيثاغورس الذاتية فيثاغورس بأنه شخص طويل ووسيم ذو شخصية جذابة، أحاطت به هالة من الغرابة عززها زيه غير المعتاد – رداء أبيض وسروال وإكليل ذهبي على رأسه. حامت حوله شائعات غريبة كقدرته على اجتراح المعجزات وامتلاكه قدمًا اصطناعية ذهبية مخبأة تحت ملابسه وقدرته على الوجود في مكانين في آن واحد.
أنشأ فيثاغورس مدرسة قرب ما يعرف اليوم بمدينة كروتوني جنوب إيطاليا، التي سُميت نصف دائرة فيثاغورس. تعلم أتباع فيثاغورس الذين أقسموا على السرية التفكير في الأرقام بطريقة مشابهة لمعتقدات القبالة اليهودية. كان له اهتمام خاص بالأرقام إلى درجة التقديس.
من العجيب أن يُنسب لفيثاغورس ابتكار واحدة من أشهر النظريات في التاريخ بالنظر إلى سمعته وشخصيته الغريبة، رغم أنه لم يكن أول من أتى بالفكرة، فقد سبقه الصينيون والبابليون إليها بألف سنة.
كتب جي دونالد آلين أستاذ الرياضيات ومدير مركز التوجيه الرياضي المعتمد على التكنولوجيا في جامعة تكساس أي آند إم: «ما لدينا هو دليل أنهم عرفوا علاقة فيثاغورس عبر أمثلة محددة، إذ وُجد لوح بابلي بأكمله يظهر مجموعات من ثلاثة أرقام تحقق العلاقة a^2+b^2=c^2».
كيف نستفيد من نظرية فيثاغورس في الوقت الراهن؟
ليست نظرية فيثاغورس مجرد مسألة رياضية رائعة فحسب. إذ تُستعمل في مجالات متعددة، من البناء والصناعة إلى الملاحة.
يعد إرساء أساسات الأبنية أحد الاستخدامات التقليدية لنظرية فيثاغورس كما يشرح آلين بقوله: «لوضع أساس لبناء مستطيل الشكل، كمعبد مثلًا، عليك تشكيل زوايا قائمة. لكن كيف ستتمكن من فعل ذلك؟ لن يفلح الاعتماد على النظر في الأبنية الكبيرة. لكن عندما يكون لديك الطول والمساحة، فبإمكانك استعمال نظرية فيثاغورس لتشكيل زاوية قائمة بدقة كبيرة».
يضيف آلين: «لقد منحتنا هذه النظرية والنظريات المتعلقة بها مجمل نظامنا للقياس. إذ تتيح للطيارين التحليق في السماء الملبدة بالغيوم، وتتيح للسفن تحديد مسارها. فكل قياسات نظام تحديد المواقع العالمي (GPS) ممكنة بفضل هذه النظرية».
في مجال الملاحة، تمكن نظرية فيثاغورس جهاز ملاحة السفينة من حساب المسافة عن نقطة تبعد مثلًا 300 كيلومتر شمالًا و400 كيلومتر غربًا. وهي مفيدة أيضًا لرسامي الخرائط الذين يستخدمونها لحساب انحدار التلال والجبال.
«هذه النظرية مهمة في كل مجالات الهندسة، بما فيها الهندسة الفراغية. وهي أساسية في فروع الرياضيات الأخرى، والفيزياء والجيولوجيا، وجميع أنواع الهندسة الميكانيكية والجوية. ويستعملها النجارون والميكانيكيون. إذا كان لديك زوايا وكنت تحتاج إلى إجراء قياسات، فأنت بحاجة إلى هذه النظرية».
اقرأ أيضًا:
سلسلة تاريخ الرياضيات الرياضيات عند الاغريق – فيثاغورس
النظريات العلمية – إعداد البروفيسور سليم زاروبي
ترجمة: إيهاب عيسى
تدقيق: طارق طويل
مراجعة: نغم رابي